Introduction

Beginner's Tutorial

System Encryption

 Supported Systems

 Hidden Operating System

 Rescue Disk

Plausible Deniability

 Hidden Volume

  Protection of Hidden Vol.

  Security Requirements

 Hidden Operating System

Parallelization

Pipelining

Hardware Acceleration

Encryption Algorithms

 AES

 Serpent

 Twofish

 Cascades

Hash Algorithms

 RIPEMD-160

 SHA-512

 Whirlpool

Technical Details

 Notation

 Encryption Scheme

 Modes of Operation

 Header Key Derivation

 Random Number Gen.

 Keyfiles

 Volume Format Spec.

 Standards Compliance

 Source Code

TrueCrypt Volume

 Creating New Volumes

 Favorite Volumes

 System Favorite Volumes

Main Program Window

 Program Menu

 Mounting Volumes

Supported Systems

Portable Mode

Keyfiles

Tokens & Smart Cards

Language Packs

Hot Keys

Security Model

Security Requirements

 Data Leaks

  Paging File

  Hibernation File

  Memory Dump Files

 Unencrypted Data in RAM

 Physical Security

 Malware

 Multi-User Environment

 Authenticity and Integrity

 New Passwords & Keyfiles

 Password/Keyfile Change

 Trim Operation

 Wear-Leveling

 Reallocated Sectors

 Defragmenting

 Journaling File Systems

 Volume Clones

 Additional Requirements

Command Line Usage

Backing Up Securely

Miscellaneous

 Use Without Admin Rights

 Sharing over Network

 Background Task

 Removable Medium Vol.

 TrueCrypt System Files

 Removing Encryption

 Uninstalling TrueCrypt

 Digital Signatures

Troubleshooting

Incompatibilities

Issues and Limitations

License

Future Development

Acknowledgements

Version History

References

   

Encryption Algorithms >  Serpent Search

Disclaimers





Please consider making a donation.

   Donate Now >> Donate   


Serpent

Designed by Ross Anderson, Eli Biham, and Lars Knudsen; published in 1998. It uses a 256-bit key, 128-bit block, and operates in XTS mode (see the section Modes of Operation). Serpent was one of the AES finalists. It was not selected as the proposed AES algorithm even though it appeared to have a higher security margin than the winning Rijndael [4]. More concretely, Serpent appeared to have a high security margin, while Rijndael appeared to have only an adequate security margin [4]. Rijndael has also received some criticism suggesting that its mathematical structure might lead to attacks in the future [4].

In [5], the Twofish team presents a table of safety factors for the AES finalists. Safety factor is defined as: number of rounds of the full cipher divided by the largest number of rounds that has been broken. Hence, a broken cipher has the lowest safety factor 1. Serpent had the highest safety factor of the AES finalists: 3.56 (for all supported key sizes). Rijndael-256 had a safety factor of 1.56.

In spite of these facts, Rijndael was considered an appropriate selection for the AES for its combination of security, performance, efficiency, implementability, and flexibility [4]. At the last AES Candidate Conference, Rijndael got 86 votes, Serpent got 59 votes, Twofish 31 got votes, RC6 got 23 votes, and MARS got 13 votes [18, 19].*



* These are positive votes. If negative votes are subtracted from the positive votes, the following results are obtained: Rijndael: 76 votes, Serpent: 52 votes, Twofish: 10 votes, RC6: -14 votes, MARS: -70 votes [19].



  Next Section >>


Legal Notices www.truecrypt.org

 Ads by Google