Introduction

Beginner's Tutorial

System Encryption

 Supported Systems

 Hidden Operating System

 Rescue Disk

Plausible Deniability

 Hidden Volume

  Protection of Hidden Vol.

  Security Requirements

 Hidden Operating System

Parallelization

Pipelining

Hardware Acceleration

Encryption Algorithms

 AES

 Serpent

 Twofish

 Cascades

Hash Algorithms

 RIPEMD-160

 SHA-512

 Whirlpool

Technical Details

 Notation

 Encryption Scheme

 Modes of Operation

 Header Key Derivation

 Random Number Gen.

 Keyfiles

 Volume Format Spec.

 Standards Compliance

 Source Code

TrueCrypt Volume

 Creating New Volumes

 Favorite Volumes

 System Favorite Volumes

Main Program Window

 Program Menu

 Mounting Volumes

Supported Systems

Portable Mode

Keyfiles

Tokens & Smart Cards

Language Packs

Hot Keys

Security Model

Security Requirements

 Data Leaks

  Paging File

  Hibernation File

  Memory Dump Files

 Unencrypted Data in RAM

 Physical Security

 Malware

 Multi-User Environment

 Authenticity and Integrity

 New Passwords & Keyfiles

 Password/Keyfile Change

 Trim Operation

 Wear-Leveling

 Reallocated Sectors

 Defragmenting

 Journaling File Systems

 Volume Clones

 Additional Requirements

Command Line Usage

Backing Up Securely

Miscellaneous

 Use Without Admin Rights

 Sharing over Network

 Background Task

 Removable Medium Vol.

 TrueCrypt System Files

 Removing Encryption

 Uninstalling TrueCrypt

 Digital Signatures

Troubleshooting

Incompatibilities

Issues and Limitations

License

Future Development

Acknowledgements

Version History

References

   

Plausible Deniability >  Hidden Volume Search

Disclaimers





Please consider making a donation.

   Donate Now >> Donate   


Hidden Volume

It may happen that you are forced by somebody to reveal the password to an encrypted volume. There are many situations where you cannot refuse to reveal the password (for example, due to extortion). Using a so-called hidden volume allows you to solve such situations without revealing the password to your volume.

The layout of a standard TrueCrypt volume before and after a hidden volume was created within it.

The layout of a standard TrueCrypt volume before and after a hidden volume was created within it.


The principle is that a TrueCrypt volume is created within another TrueCrypt volume (within the free space on the volume). Even when the outer volume is mounted, it should be impossible to prove whether there is a hidden volume within it or not*, because free space on any TrueCrypt volume is always filled with random data when the volume is created** and no part of the (dismounted) hidden volume can be distinguished from random data. Note that TrueCrypt does not modify the file system (information about free space, etc.) within the outer volume in any way.


The password for the hidden volume must be substantially different from the password for the outer volume. To the outer volume, (before creating the hidden volume within it) you should copy some sensitive-looking files that you actually do NOT want to hide. These files will be there for anyone who would force you to hand over the password. You will reveal only the password for the outer volume, not for the hidden one. Files that really are sensitive will be stored on the hidden volume.

A hidden volume can be mounted the same way as a standard TrueCrypt volume: Click Select File or Select Device to select the outer/host volume (important: make sure the volume is not mounted). Then click Mount, and enter the password for the hidden volume. Whether the hidden or the outer volume will be mounted is determined by the entered password (i.e., when you enter the password for the outer volume, then the outer volume will be mounted; when you enter the password for the hidden volume, the hidden volume will be mounted).

TrueCrypt first attempts to decrypt the standard volume header using the entered password. If it fails, it loads the area of the volume where a hidden volume header can be stored (i.e. bytes 65536–131071, which contain solely random data when there is no hidden volume within the volume) to RAM and attempts to decrypt it using the entered password. Note that hidden volume headers cannot be identified, as they appear to consist entirely of random data. If the header is successfully decrypted (for information on how TrueCrypt determines that it was successfully decrypted, see the section Encryption Scheme), the information about the size of the hidden volume is retrieved from the decrypted header (which is still stored in RAM), and the hidden volume is mounted (its size also determines its offset).

A hidden volume can be created within any type of TrueCrypt volume, i.e., within a file-hosted volume or partition/device-hosted volume (requires administrator privileges). To create a hidden TrueCrypt volume, click on Create Volume in the main program window and select Create a hidden TrueCrypt volume. The Wizard will provide help and all information necessary to successfully create a hidden TrueCrypt volume.

When creating a hidden volume, it may be very difficult or even impossible for an inexperienced user to set the size of the hidden volume such that the hidden volume does not overwrite data on the outer volume. Therefore, the Volume Creation Wizard automatically scans the cluster bitmap of the outer volume (before the hidden volume is created within it) and determines the maximum possible size of the hidden volume.***

If there are any problems when creating a hidden volume, refer to the chapter Troubleshooting for possible solutions.


Note that it is also possible to create and boot an operating system residing in a hidden volume (see the section Hidden Operating System).



* Provided that all the instructions in the TrueCrypt Volume Creation Wizard have been followed and provided that the requirements and precautions listed in the subsection Security Requirements and Precautions Pertaining to Hidden Volumes are followed.
** Provided that the options Quick Format and Dynamic are disabled and provided that the volume does not contain a filesystem that has been encrypted in place (TrueCrypt does not allow the user to create a hidden volume within such a volume). For information on the method used to fill free volume space with random data, see chapter Technical Details, section TrueCrypt Volume Format Specification.
*** The wizard scans the cluster bitmap to determine the size of the uninterrupted area of free space (if there is any) whose end is aligned with the end of the outer volume. This area accommodates the hidden volume and therefore the size of this area limits the maximum possible size of the hidden volume. On Linux and Mac OS X, the wizard actually does not scan the cluster bitmap, but the driver detects any data written to the outer volume and uses their position as previously described.





 Ads by Google 




  Next Section >>


Legal Notices www.truecrypt.org

 Ads by Google